

Controle do driver EPS pela Modbus RTU

O tutorial explica como programar e operar o driver EPS pela comunicação Mobbus RTU.

Nomes e funções dos terminais do circuito principal

Terminal	Nome	Descrição
L1, L2, L3	Entradas da fonte de alimentação	B2=Trifásico/Monofásico 200-230VAC B1=380 Vac ou 220Vac (verifique seu modelo)
L1C, L2C	Alimentação do circuito de comando	B2=200-230VAC 10% -15% 50/60HZ B1=380Vac ou 220Vac (verificar seu modelo)
U, V, W	Terminais de alimentacao servo motor	Conectado ao servo-motor
ŧ	terminais de terra	Ligar ao terra de proteção da instalação elétrica
P+, D e C	Ligação da resistência regenerativa	P+ e D normalmente em curto (resistor regenerativo interno). Se producidade do resistor regenerativo interno or insuficiente, remova o jumper e conecte um resistor externo entre P+ e C

Servo B2 e B1 - Ligação do circuito principal

No Servo B2, ligar as entradas de força do driver com alimentação 220Vca trifásica (L1, L2, L3) ou * monofásica 220Vca (L1, L2) e colocar alimentação 220Vca em LC1 e LC2 para alimentação do circuito de comando do driver.

No Servo B1, **verifique a alimentação** para ligar as entradas de força do driver corretamente. Se for **380Vca** conecte a alimentação trifásica (**L1, L2, L3**) e colocar alimentação **380Vca** em **LC1** e **LC2** para alimentação do circuito de comando do driver.

Servo B2

Ligações do cabo de comando no DB44 macho (CN2):

Funções das entradas digitais no Servo B2 (DB44 / CN2)

Terminal	Identificação	Função
11	COM+	+24V de uma fonte externa
9	DI1	ED 1 S-ON , habilita o servo para movimentação
10	DI2	ED 2 JOG+ , movimenta o motor manualmente
34	DI3	ED 3 JOG-, movimenta o motor em reverso manualmente
8	DI4	ED 4 S-HOME , inicia referenciamento do eixo
33	DI5	ED 5 ZPS , sensor da zona de referenciamento
32	DI6	ED 6 PTRG , comando de início de movimento interno

<u>Servo B1</u>

Ligações do cabo de comando no Honda macho (CN2):

Funções das entradas digitais no Servo B1 (Honda / CN2)

Terminal	Identificação	Função	
47	COM+	+24V de uma fonte externa	
40	DI1	ED 1 S-ON, habilita o servo para movimentação	
41	DI2	ED 2 JOG+ , movimenta o motor manualmente	
42	DI3	ED 3 JOG- , movimenta o motor em reverso manualmente	
43	DI4	ED 4 S-HOME , inicia referenciamento do eixo	
44	DI5	ED 5 ZPS , sensor da zona de referenciamento	
45	DI6	ED 6 PTRG , comando de início de movimento interno	

Ligações do cabo da rede RS485 nos conetores RJ45

Os 2 conetores estão ligados em paralelo para permitir a ligação em daisy chain com o próximo driver da rede, podemos ligar o cabo em qualquer um deles.

Testes de movimentação do servo motor pelo JOG

Podemos utilizar as funções internas do driver para fazer os testes básicos de movimentação do motor sem necessidade de mudar as configurações de fábrica:

Modo JOG:

- 1- Ajuste a velocidade de JOG no parâmetro PA-306
- 2- Pressione MOD até chegar ao grupo AF
- 3- Selecione AF2 e pressione SET

4- A tela **CONTINUE** será exibida, em seguida pressione **MOD** para ativar o controle e travar o eixo.

5- As setas 🛓 e 🔻 controlam o movimento do eixo nos dois sentidos.

Controle pela malha de posicionamento interno

Atualize os parâmetros conforme a tabela abaixo:

Somente os valores em vermelho devem ser alterados, os demais são default.

Existe um exemplo do uso do display e dos botões para parametrização na página 7.

Parâmetro	Função	Valor programado*
PA-000	Controle de posicionamento interno	h00 <mark>A</mark> 0
PA-700	Modo de movimentação incremental / absoluto	Inc=h00 <mark>0</mark> 0, Abs=h00 1 0
PA-771	Referenciamento pelo Z do servo	h00 <mark>0</mark> 0
PA-500	ED 1 - S-ON, habilita o servo para movimentação	0 (d)
PA-501	ED 2 - JOG, movimenta o motor manualmente	23 (d)
PA-502	ED 3 - JOG, movimenta o motor em reverso	24 (d)
PA-503	ED 4 - S-HOME, inicia o referenciamento do eixo	25 (d)
PA-504	ED 5 - ZPS, sensor referenciamento	11 (d)
PA-505	ED 6 - PTRG, início do movimento	22 (d)
PA-749	ACC/DEC (ms) tempos aceleração/desaceleração	10 (d)
PA-205	**Numerador da engrenagem eletrônica	1 (d)
PA-206	*Denominador da engrenagem eletrônica	1 (d)

*Alguns parâmetros são programados em hexadecimal (h), os demais em decimal (d). **Na configuração acima o servo terá uma resolução de 20000 divisões por volta.

A resolução é definida por: Resolução = <u>5000 (encoder do motor) x quadratura</u> PA205 / PA206

Exemplo: Resolução por volta: (5000 x 4) / (1 / 1) = 20000 unidades por volta

Posta em marcha e operação

Para colocar o servo no modo operacional e assim travar o eixo do motor, a entrada **S-ON** deve ser verdadeira, feito isso as entradas **JOG** passam a poder movimentar o eixo.

Se não for feito um referenciamento o motor vai partir de onde está (posição zero) e os movimentos serão sempre relativos a última posição do motor.

Caso um referenciamento seja necessário devemos fazer PA700=h0010, neste caso um pulso na entrada **S-HOME** faz com que o servo avance em busca do sensor ligado na entrada **ZPS** que indica que a referência está nesta volta do motor, após receber o pulso do sensor **ZPS** ele reduz a velocidade e retorna até encontrar o pulso Z do próprio encoder (endereço zero).

Parametrização da rede serial RS485 Modbus RTU

Devemos primeiramente definir no driver os parâmetros da rede serial RS485 Modbus:

Modificar **PA016** de h0095 (default) para h0003 (8 bits, no parity, 1 stop bit, 19200 bauds) e o endereço na rede se necessario em PA015 (default = h0001).

Escrita dos endereços Modbus e testes com IHM Weintek

Importante: o comando de escrita na Modbus deve ser feito somente se necessário, não devemos ficar reescrevendo o mesmo valor no parâmetro. A escrita cíclica gera o erro 80.

No EasyBuilder, ao criar um projeto, adicione o driver "Modbus RTU (Zero-based Addressing) e altere os parâmetros destacadas abaixo para que a comunicação seja realizada de uma forma mais estável:

Syste	rameter Settings	\times			
F	ce Settings ×				
D	Name : Servo	^			
	O HMI O Device				
	Location : Local V Settings Select Local for a device connected to this HMI, or Remote for a device connected through another HMI.				
	Device type : MODBUS RTU (Zero-based Addressing)				
	I/F: RS-485 2W Open Device Connection Guide				
	Support off-line simulation on HMI (use LB-12358). Support communications between HMI and device in pass-through mode.				
	* Set LW-9903 to 2 to enhance the speed of download/upload device program in pass-through mode. COM : COM4 (*) (19200,N,8,1) Settings				
*	OM Port Settings				
P	COM : COM 4 * V Timeout (sec) : 1.0 V	I.			
	Baud rate : 19200 V Turn around delay (ms) : 10	Ŀ			
	Data bits: 8 Bits V	Ŀ			
a	Stop bits : 1 Bit	Ŀ			
	* PC only	Ŀ			
	The number of resending commands : $3 \sim$				
	76800 baud rate requires OS version 20160824 or later. OK Cancel OK Cancelar Ajuda	~			

Nas tabelas do Servo EPS, os **endereços** estão definidos no formato **hexadecimal**, mas nas ihms Weintek o endereçamento é feito em decimal, portanto devem antes ser convertidos para utilização.

Exemplos: 256=h00FF, 702=h02BE, 20000=h4E20, etc

Nas IHM's Weintek o comando 4x permite a escrita e leitura de todos os registros Modbus.

Registro em decimal e (h)	Função	Formato
1536 (h600)	RPM do motor (leitura)	16bits
701/702 (h2BD/2BE)	Posição 1 (leitura/escrita)	32bits
733 (h2DD)	Velocidade em divisões/s (hz)	16bits

Após escrever o valor da posição desejada nos registros 701/702 basta um pulso na entrada **PTRG** para que o eixo do motor se desloque com a velocidade definida no registro 733 para este destino. O valor da posição é dado em divisões, assim 60.000 significa 3 voltas do motor, pois nosso ajuste na parametrização foi de 20.000 pulsos por volta.

Para fazer um novo movimento basta escrever pela RS485 um novo destino em 701/702 e pulsar novamente **PTRG**.

Tabela dos registros Modbus para escrita e monitoração

Notes: W/R: writable/readable (R: readable only; W: writable only)

Address Meaning		Unit	Data type	W/R
0000~03E7H	Parameters in Chapter 12.3. Examples: PA005: 0005H PA101: 0065H PA307: 0133H	Unassigned hexadecimal Assigned hexadecimal Assigned 32-bit	W/R	
0600~0628H: Monitoring display parameters.				
0600H	Motor speed (dP 00)	rpm	Assigned hexadecimal	R
0601H	Motor feedback pulse number (encoder unit, lower 4 digits) (dP 01)	pulse	Assigned hexadecimal	R
0602H	Motor feedback pulse number (encoder unit, higher 5 digits) (dP 02)	pulse	Assigned hexadecimal	R
0603H	Input pulse number before electronic gear (user unit, lower 4 digits) (dP 03)	pulse	Assigned hexadecimal	R
0604H	Input pulse number before electronic gear (user unit, higher 5 digits) (dP 04)	pulse	Assigned hexadecimal	R
0605H	Deviation pulse number (encoder unit, lower 4 digits) (dP 05)	pulse	Assigned hexadecimal	R
0606H	Deviation pulse number (encoder unit, higher 5 digits) (dP 06)	pulse	Assigned hexadecimal	R
0607H Speed instruction (analog voltage instruction) (dP 07)		0.01V	Unassigned hexadecimal	R
0608H Internal speed instruction (dP 08)		rpm	Assigned hexadecimal	R
0609H	Torque instruction (analog voltage instruction) (dP 09)	0.01V	Unassigned hexadecimal	R
060AH	Internal torque instruction (value in relation to the rated torque) (dP 10)	%	Assigned hexadecimal	R
060BH	Torque feedback (value in relation to the rated torque) (dP 11)	%	Assigned hexadecimal	R
060CH	Input signal monitoring (dP 12)	Unassigned hexadecimal	R	
060DH Output signal monitoring (dP 13)		Unassigned hexadecimal	R	
060EH Instruction pulse frequency (dP 14)		0.1Khz	Assigned hexadecimal	R
060FH DC bus voltage (dP 15)		v	Unassigned hexadecimal	R
0610H Total operation time (dP 16)		н	Unassigned hexadecimal	R
0611H	Rotation angle (dP 17)		Unassigned hexadecimal	R
0612H	Exact position of absolute encoder (single-turn or multi-turn) (dP 18)	2 pulses	Unassigned hexadecimal	R
0613H Number of encoder turns (only effective for multi-turn absolute encoders) (dP 19		turn	Unassigned hexadecimal	R

Nas tabelas os **endereços** estão definidos no formato **hexadecimal**, mas nas ihms Weintek o endereçamento é feito em decimal, portanto devem antes ser convertidos para utilização. Os **valores dos registros** (data) de 16 e 32 bits são convertidos diretamente pela ihm para hexadecimal.

Recarga dos parâmetros de fábrica (default)

Caso o drive já tenha sido utilizado anteriormente devemos preventivamente recolocar os todos os parâmetros na condição de fábrica, pois assim evitaremos a ocorrência de conflitos entre os parâmetros.

Passo	Display	Botões	Operação
1	8F 88		Pressione a tecla MOD até chegar em AF (funções auxiliares)
2	RF []5	MOD C SET	Navegue no menu usando as setas até chegar em AF05
3	P. 1 ~ 12		Com o eixo solto pressione a tecla SET
4	no-op	Caso o servo esteja habilitado ou com os parâmetros bloqueados "no-oP" será mostrado	Desabilite S-ON ou libere os parâmetros escrevendo o valor 53 em AF03
5	-		Mantenha pressionado ↑
6	donE		Será mostrado "done"
7	Piinik		Solte a tecla ↑
8	<i>RF 1</i> 15.	MOD - SET	Pressione MOD ou SET para sair
9		Desligue o equipamento e aguarde a desenergização	
10		Energize o driver	

Considerações sobre a alimentação e ruído:

O aterramento do driver através de seu parafuso na carcaça é fundamental para a segurança e para evitar interferências por ruído elétrico.

Para evitar interferências também é extremamente importante aterrar o pino 16 do conetor CN2 do driver, como já foi apresentado na tabela de ligações.

Aconselhamos utilizar uma fonte isolada para alimentar as saídas do clp que irão gerar os sinais de controle a fim de evitar interferências externas, a solução mais fácil é usar a fonte do próprio CLP (caso exista) ou usar a fonte 24V do driver conforme abaixo:

Terminal	Identificação	Função
16	GND	Terra dos circuitos de i/o internos do driver
17	+24Vcc	Positivo da fonte interna 24Vcc 300mA
14	-24Vcc	Negativo da fonte interna 24Vcc 300mA

Elaborado por Walter Bruno Bernardo (automacao@tecnolog.ind.br) em 25/09/2019

Editado: 08/10/2021